6,564 research outputs found

    Hysteresis loop areas in kinetic Ising models: Effects of the switching mechanism

    Full text link
    Experiments on ferromagnetic thin films have measured the dependence of the hysteresis loop area on the amplitude and frequency of the external field, AA=A(H0,ω)A(H_{0},\omega), and approximate agreement with numerical simulations of Ising models has been reported. Here we present numerical and theoretical calculations of AA in the low-frequency regime for two values of H0H_{0}, which bracket a temperature and system-size dependent crossover field. Our previous Monte Carlo studies have shown that the hysteretic response of the kinetic Ising model is qualitatively different for amplitudes above and below this crossover field. Using droplet theory, we derive analytic expressions for the low-frequency asymptotic behavior of the hysteresis loop area. In both field regimes, the loop area exhibits an extremely slow approach to an asymptotic, logarithmic frequency dependence of the form A[ln(H0ω)]1A \propto - [\ln (H_{0} \omega)]^{-1}. Our results are relevant to the interpretation of data from experiments and simulations, on the basis of which power-law exponents for the hysteresis-loop area have been reported.Comment: 9 pages including 3 figures. Submitted as a manuscript for the 7th Joint MMM-Intermag conference. To be published in the Journal of Applied Physics and the IEEE Transactions on Magnetics. Contains 1 updated figure and revised tex

    Using GIS to Evaluate the Effects of Flood Risk on Residential Property Values

    Get PDF
    Annually, flooding causes more property damage in the United States than any other type of natural disaster. One of the consequences of continued urbanization is the tendency for floodplains to expand, increasing flood risks in the areas around urban streams and rivers. Hedonic modeling techniques can be used to estimate the relationship between residential housing prices and flood risks. One weakness of hedonic modeling has been incomplete controls for locational characteristics influencing a given property. In addition, relatively primitive assumptions have been employed in modeling flood risk exposures. We use GIS tools to provide more accurate measures of flood risks, and a more thorough accounting of the locational features in the neighborhood. This has important policy implications. Once a complete hedonic model is developed, the reduction in property value attributed to an increase in flood risks can, under certain circumstances, be interpreted as the household’s willingness to pay for the reduction of flood risk. Willingness to pay estimates can in turn be used to guide policymakers as they assess community-wide benefits from flood control projects

    Monte Carlo Methods for Equilibrium and Nonequilibrium Problems in Interfacial Electrochemistry

    Full text link
    We present a tutorial discussion of Monte Carlo methods for equilibrium and nonequilibrium problems in interfacial electrochemistry. The discussion is illustrated with results from simulations of three specific systems: bromine adsorption on silver (100), underpotential deposition of copper on gold (111), and electrodeposition of urea on platinum (100).Comment: RevTex, 14 pages, 8 figures. To appear in book _Interfacial Electrochemisty

    Quantum Decoherence at Finite Temperatures

    Get PDF
    We study measures of decoherence and thermalization of a quantum system SS in the presence of a quantum environment (bath) EE. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with respect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider the uncoupled system to predict decoherence and thermalization measures of SS. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of SS and of EE. Numerical results for both coupled and decoupled systems with up to 40 quantum spins validate these findings.Comment: 5 pages, 3 figure

    Universal Scaling in Mixing Correlated Growth with Randomness

    Full text link
    We study two-component growth that mixes random deposition (RD) with a correlated growth process that occurs with probability p. We find that these composite systems are in the universality class of the correlated growth process. For RD blends with either Edwards-Wilkinson of Kardar-Parisi-Zhang processes, we identify a nonuniversal parameter in the universal scaling in p.Comment: 4 pages, 6 figures, 11 references; under revie

    Two Modes of Magnetization Switching in a Simulated Iron Nanopillar in an Obliquely Oriented Field

    Full text link
    Finite-temperature micromagnetics simulations are employed to study the magnetization-switching dynamics driven by a field applied at an angle to the long axis of an iron nanopillar. A bi-modal distribution in the switching times is observed, and evidence for two competing modes of magnetization-switching dynamics is presented. For the conditions studied here, temperature T=20T = 20 K and the reversal field 3160 Oe at an angle of 75^\circ to the long axis, approximately 70% of the switches involve unstable decay (no free-energy barrier) and 30% involve metastable decay (a free-energy barrier is crossed). The latter are indistinguishable from switches which are constrained to start at a metastable free-energy minimum. Competition between unstable and metastable decay could greatly complicate applications involving magnetization switches near the coercive field.Comment: 19 pages, 7 figure

    Controlling Metamaterial Resonances with Light

    Full text link
    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behaviour of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching is implemented by coherently driving the resonant permittivity of the embedding medium by applied optical radiation. The effect of embedding Split ring resonators (SRR) in a frequency- dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetic induced transparency (EIT), is manifested in the splitting of the negative permeability band, the modified (frequency-dependent) filling fractions and dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, while for an embedding medium exhibiting EIT, also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures as well as the inhomogeneous broadening due to structural imperfections is demonstrated. Studies on plasmonic metamaterials that consist of metallic nanorods arranged in loops and exhibit a collective magnetic response at optical frequencies are presented. Control and switching in this class of plasmonic nanorod metamaterials is shown to be possible, for example, by embedding these arrays in a Raman active liquid like CS2_2 and utilizing the Inverse Raman Effect.Comment: 9 pages, 9 figure

    Enhanced graphene nonlinear response through geometrical plasmon focusing

    Get PDF
    We propose a simple approach to couple light into graphene plasmons and focus these excitations at focal spots of a size determined by the plasmon wavelength, thus producing high optical field enhancement that boosts the nonlinear response of the material. More precisely, we consider a graphene structure in which incident light is coupled to its plasmons at the carbon edges and subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large confinement of graphene plasmons, materializing in small, intense focal spots, in which the extraordinary nonlinear response of this material leads to relatively intense harmonic generation. This result shows the potential of plasmon focusing in suitably edged graphene structures to produce large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version
    corecore